Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.782
Filtrar
1.
Front Neurorobot ; 18: 1368243, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559491

RESUMO

Traditional trajectory learning methods based on Imitation Learning (IL) only learn the existing trajectory knowledge from human demonstration. In this way, it can not adapt the trajectory knowledge to the task environment by interacting with the environment and fine-tuning the policy. To address this problem, a global trajectory learning method which combinines IL with Reinforcement Learning (RL) to adapt the knowledge policy to the environment is proposed. In this paper, IL is proposed to acquire basic trajectory skills, and then learns the agent will explore and exploit more policy which is applicable to the current environment by RL. The basic trajectory skills include the knowledge policy and the time stage information in the whole task space to help learn the time series of the trajectory, and are used to guide the subsequent RL process. Notably, neural networks are not used to model the action policy and the Q value of RL during the RL process. Instead, they are sampled and updated in the whole task space and then transferred to the networks after the RL process through Behavior Cloning (BC) to get continuous and smooth global trajectory policy. The feasibility and the effectiveness of the method was validated in a custom Gym environment of a flower drawing task. And then, we executed the learned policy in the real-world robot drawing experiment.

2.
BMC Biotechnol ; 24(1): 17, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566117

RESUMO

Thermostable DNA polymerases, such as Taq isolated from the thermophilic bacterium Thermus aquaticus, enable one-pot exponential DNA amplification known as polymerase chain reaction (PCR). However, properties other than thermostability - such as fidelity, processivity, and compatibility with modified nucleotides - are important in contemporary molecular biology applications. Here, we describe the engineering and characterization of a fusion between a DNA polymerase identified in the marine archaea Nanoarchaeum equitans and a DNA binding domain from the thermophile Sulfolobus solfataricus. The fusion creates a highly active enzyme, Neq2X7, capable of amplifying long and GC-rich DNA, unaffected by replacing dTTP with dUTP in PCR, and tolerant to various known PCR inhibitors. This makes it an attractive DNA polymerase for use, e.g., with uracil excision (USER) DNA assembly and for contamination-free diagnostics. Using a magnification via nucleotide imbalance fidelity assay, Neq2X7 was estimated to have an error rate lower than 2 ∙ 10-5 bp-1 and an approximately 100x lower fidelity than the parental variant Neq2X, indicating a trade-off between fidelity and processivity - an observation that may be of importance for similarly engineered DNA polymerases. Neq2X7 is easy to produce for routine application in any molecular biology laboratory, and the expression plasmid is made freely available.


Assuntos
DNA Polimerase Dirigida por DNA , Uracila , Reação em Cadeia da Polimerase , DNA Polimerase Dirigida por DNA/genética , Uracila/metabolismo , Plasmídeos , DNA
3.
Methods Mol Biol ; 2797: 323-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570470

RESUMO

Cell line panels have proven to be an invaluable tool for investigators researching a range of topics from drug mechanism or drug sensitivity studies to disease-specific etiology. The cell lines used in these panels may range from heterogeneous tumor populations grown from primary tumor isolations to genetically engineered clonal cell lines which express specific gene isoforms. Mouse embryonic fibroblast (MEF) cells are a commonly used cell line for biological research due to their accessibility and ease of genetic manipulation. This chapter will describe the process of creating a size-sorted diploid (SSDC) clonal cell panel expressing specific RAS isoforms from a previously engineered RAS-less MEF cell line pool.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Animais , Camundongos , Diploide , Fibroblastos/patologia , Células Clonais , Linhagem Celular , Neoplasias/patologia , Isoformas de Proteínas
4.
Heliyon ; 10(7): e28223, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596014

RESUMO

Mycoplasma genitalium is a pathogenic microorganism linked to a variety of severe health conditions including ovarian cancer, prostate cancer, HIV transmission, and sexually transmitted diseases. A more effective approach to address the challenges posed by this pathogen, given its high antibiotic resistance rates, could be the development of a peptide vaccine. In this study, we used experimentally validated 13 membrane proteins and their immunogenicity to identify suitable vaccine candidates. Thus, based on immunogenic properties and high conservation among other Mycoplasma genitalium sub-strains, the P110 surface protein is considered for further investigation. Later on, we identified T-cell epitopes and B-cell epitopes from the P110 protein to construct a multiepitope-based vaccine. As a result, the 'NIAPISFSFTPFTAA' T-cell epitope and 'KVKYESSGSNNISFDS' B-cell epitope have shown 99.53% and 87.50% population coverage along with 100% conservancy among the subspecies, and both epitopes were found to be non-allergenic. Furthermore, focusing on molecular docking analysis showed the lowest binding energy for MHC-I (-137.5 kcal/mol) and MHC-II (-183.3 kcal/mol), leading to a satisfactory binding strength between the T-cell epitopes and the MHC molecules. However, the constructed multiepitope vaccine (MEV) consisting of 54 amino acids demonstrates favorable characteristics for a vaccine candidate, including a theoretical pI of 4.25 with a scaled solubility of 0.812 and high antigenicity probabilities. Additionally, structural analyses reveal that the MEV displays substantial alpha helices and extended strands, vital for its immunogenicity. Molecular docking with the human Toll-like receptors TLR1/2 heterodimer shows strong binding affinity, reinforcing its potential to elicit an immune response. Our immune simulation analysis demonstrates immune memory development and robust immunity, while codon adaptation suggests optimal expression in E. coli using the pET-28a(+) vector. These findings collectively highlight the MEV's potential as a valuable vaccine candidate against M. genitalium.

5.
Mol Biotechnol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598092

RESUMO

The current research for the synthesis of industrially important fine chemicals is more inclined towards developing enzyme-based processes. The biotransformation reactions wherein microbial cells/enzymes are used, have become essential in making the process efficient, green, and economical. Amongst industrially important enzymes, amidase is one of the most versatile tools in biocatalysis and biotransformation reactions. It shows broad substrate specificity and sturdy functional characteristics because of its promiscuous nature. Further, advancement in the area led to the development of amidase recombinant systems, which are developed using biotechnology and enzyme engineering tools. Additionally, recombinant amidases may be instrumental in commercializing the synthesis of fine chemicals such as hydroxamic acids that have a significant pharmaceutical market. Hence, the present review focuses on highlighting and assimilating the tools and techniques used in developing recombinant systems followed by their applications.

6.
Mol Ther Methods Clin Dev ; 32(2): 101241, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38585687

RESUMO

While recombinant adenoviruses (rAds) are widely used in both laboratory and medical gene transfer, library-based applications using this vector platform are not readily available. Recently, we developed a new method, the CRISPR-Cas9 mediated in vivo terminal resolution aiding high-efficiency rescue of rAds from recombinant DNA. Here we report on a genetic workflow that allows construction of bacterial artificial chromosome-based rAd libraries reconstituted using highly efficient terminal resolution. We utilized frequent, pre-existing genomic sequences to allow the insertion of a selection marker, complementing two selected target sites into novel endonuclease recognition sites. In the second step, this selection marker is replaced with a transgene or mutation of interest via Gibson assembly. Our approach does not cause unwanted genomic off-target mutations while providing substantial flexibility for the site and nature of the genetic modification. This new genetic workflow, which we termed half site-directed fragment replacement (HFR) allows the introduction of more than 106 unique modifications into rAd encoding BACs using laboratory scale methodology. To demonstrate the power of HFR, we rescued barcoded viral vector libraries yielding a diversity of approximately 2.5 × 104 unique rAds per cm2 of transfected cell culture.

7.
Biotechnol J ; 19(4): e2400114, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622790

RESUMO

Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.


Assuntos
DNA , Escherichia coli , Escherichia coli/genética , RNA Ribossômico 16S , Clonagem Molecular , Plasmídeos , DNA/genética , Vetores Genéticos
8.
Cell Reprogram ; 26(2): 57-66, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598277

RESUMO

Handmade Cloning (HMC) is a pivotal technique for cloning pig embryos. Despite its significance, the low efficiency of this method hampers its widespread application. Although numerous factors and signaling pathways influencing embryo development have been studied, the mechanisms underlying low developmental capacity and insufficient reprogramming of cloned embryos remain elusive. In the present study, we sought to elucidate key regulatory factors involved in the development of pig HMC embryos by comparing and analyzing the gene expression profiles of HMC embryos with those of naturally fertilized (NF) embryos at the 4-cell, 8-cell, and 16-cell stages. The results showed that ZFP42 expression is markedly higher in NF embryos than in cloned counterparts. Subsequent experiments involving the injection of ZFP42 messenger RNA (mRNA) into HMC embryos showed that ZFP42 could enhance the blastocyst formation rate, upregulate pluripotent genes and metabolic pathways. This highlights the potential of ZFP42 as a critical factor in improving the development of pig HMC embryos.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Suínos , Animais , Clonagem de Organismos/métodos , Desenvolvimento Embrionário/fisiologia , Transcriptoma , Clonagem Molecular , Blastocisto/metabolismo
9.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611746

RESUMO

Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.


Assuntos
Quitinases , Inseticidas , Animais , Humanos , Quitinases/genética , Quitinases/farmacologia , Larva , Serratia marcescens/genética , Zea mays , Spodoptera , Escherichia coli , Clonagem Molecular , Produtos Agrícolas , Inseticidas/farmacologia
10.
BMC Plant Biol ; 24(1): 286, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627660

RESUMO

Fruit length is a crucial agronomic trait of snake gourd (Trichosanthes anguina L); however, genes associated with fruit length have not been characterised. In this study, F2 snake gourd populations were generated by crossing the inbred lines, S1 and S2 (fruit lengths: 110 and 20 cm, respectively). Subsequently, bulk segregant analysis, sequencing, and fine-mapping were performed on the F2 population to identify target genes. Our findings suggest that the fruit length of snake gourd is regulated by a major-effect regulatory gene. Mining of genes regulating fruit length in snake gourd to provide a basis for subsequent selection and breeding of new varieties. Genotype-phenotype association analysis was performed on the segregating F2 population comprising 6,000 plants; the results indicate that the target gene is located on Chr4 (61,846,126-61,865,087 bp, 18.9-kb interval), which only carries the annotated candidate gene, Tan0010544 (designated TFL). TFL belongs to the MADS-box family, one of the largest transcription factor families. Sequence analysis revealed a non-synonymous mutation of base C to G at position 202 in the coding sequence of TFL, resulting in the substitution of amino acid Gln to Glu at position 68 in the protein sequence. Subsequently, an InDel marker was developed to aid the marker-assisted selection of TFL. The TFL in the expression parents within the same period was analysed using quantitative real-time PCR; the TFL expression was significantly higher in short fruits than long fruits. Therefore, TFL can be a candidate gene for determining the fruit length in snake gourd. Collectively, these findings improve our understanding of the genetic components associated with fruit length in snake gourds, which could aid the development of enhanced breeding strategies for plant species.


Assuntos
Trichosanthes , Trichosanthes/genética , Frutas/genética , Melhoramento Vegetal , Fenótipo , Genes de Plantas/genética
11.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592751

RESUMO

Panicle type is one of the important factors affecting rice (Oryza sativa L.) yield, and the identification of regulatory genes in panicle development can provide significant insights into the molecular network involved. This study identified a large and dense panicle 1 (ldp1) mutant produced from the Wuyunjing 7 (WYJ7) genotype, which displayed significant relative increases in panicle length, number of primary and secondary branches, number of grains per panicle, grain width, and grain yield per plant. Scanning electron microscopy results showed that the shoot apical meristem (SAM) of ldp1 was relatively larger at the bract stage (BM), with a significantly increased number of primary (PBM) and secondary branch (SBM) meristematic centers, indicating that the ldp1 mutation affects early stages in SAM development Comparative RNA-Seq analysis of meristem tissues from WYJ7 and ldp1 at the BM, PBM, and SBM developmental stages indicated that the number of differentially expressed genes (DEGs) were highest (1407) during the BM stage. Weighted gene coexpression network analysis (WGCNA) revealed that genes in one module (turquoise) are associated with the ldp1 phenotype and highly expressed during the BM stage, suggesting their roles in the identity transition and branch differentiation stages of rice inflorescences. Hub genes involved in auxin synthesis and transport pathways, such as OsAUX1, OsAUX4, and OsSAUR25, were identified. Moreover, GO and KEGG analysis of the DEGs in the turquoise module and the 1407 DEGs in the BM stage revealed that a majority of genes involved in tryptophan metabolism and auxin signaling pathway were differentially expressed between WYJ and ldp1. The genetic analysis indicated that the ldp1 phenotype is controlled by a recessive monogene (LDP1), which was mapped to a region between 16.9 and 18.1 Mb on chromosome seven. This study suggests that the ldp1 mutation may affect the expression of key genes in auxin synthesis and signal transduction, enhance the size of SAM, and thus affect panicle development. This study provides insights into the molecular regulatory network underlying rice panicle morphogenesis and lays an important foundation for further understanding the function and molecular mechanism of LDP1 during panicle development.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38656129

RESUMO

Thyroid dysgenesis (TD) is the common pathogenic mechanism of congenital hypothyroidism (CH). In addition, known pathogenic genes are limited to those that are directly involved in thyroid development. To identify additional candidate pathogenetic genes, we performed forward genetic screening for TD in zebrafish, followed by positional cloning. The candidate gene was confirmed in vitro using the Nthy-ori 3.1 cell line and in vivo using a zebrafish model organism. We obtained a novel zebrafish line with thyroid dysgenesis and identified the candidate pathogenetic gene taf1 by positional cloning. Further molecular studies revealed that taf1 was needed for the proliferation of thyroid follicular cells by binding to the NOTCH1 promoter region. Knockdown of TAF1 impaired the proliferation and maturation of thyroid cells, thereby leading to thyroid dysplasia. This study showed that TAF1 promoted Notch signaling and that this association played a pivotal role in thyroid development.

14.
J Integr Plant Biol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656698

RESUMO

Leaf senescence is an essential physiological process related to grain yield potential and nutritional quality. Green leaf duration (GLD) after anthesis directly reflects the leaf senescence process and exhibits large genotypic differences in common wheat; however, the underlying gene regulatory mechanism is still lacking. Here, we identified TaNAM-A1 as the causal gene of the major loci qGLD-6A for GLD during grain filling by map-based cloning. Transgenic assays and TILLING mutant analyses demonstrated that TaNAM-A1 played a critical role in regulating leaf senescence, and also affected spike length and grain size. Furthermore, the functional divergences among the three haplotypes of TaNAM-A1 were systematically evaluated. Wheat varieties with TaNAM-A1d (containing two mutations in the coding DNA sequence of TaNAM-A1) exhibited a longer GLD and superior yield-related traits compared to those with the wild type TaNAM-A1a. All three haplotypes were functional in activating the expression of genes involved in macromolecule degradation and mineral nutrient remobilization, with TaNAM-A1a showing the strongest activity and TaNAM-A1d the weakest. TaNAM-A1 also modulated the expression of the senescence-related transcription factors TaNAC-S-7A and TaNAC016-3A. TaNAC016-3A enhanced the transcriptional activation ability of TaNAM-A1a by protein-protein interaction, thereby promoting the senescence process. Our study offers new insights into the fine-tuning of the leaf functional period and grain yield formation for wheat breeding under various geographical climatic conditions.

15.
Sci Rep ; 14(1): 7834, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570597

RESUMO

Potassium channels belong to the super family of ion channels and play a fundamental role in cell excitability. Kir channels are potassium channels with an inwardly rectifying property. They play a role in setting the resting membrane potential of many excitable cells including neurons. Although putative Kir channel family genes can be found in the Apis mellifera genome, their functional expression, biophysical properties, and sensitivity to small molecules with insecticidal activity remain to be investigated. We cloned six Kir channel isoforms from Apis mellifera that derive from two Kir genes, AmKir1 and AmKir2, which are present in the Apis mellifera genome. We studied the tissue distribution, the electrophysiological and pharmacological characteristics of three isoforms that expressed functional currents (AmKir1.1, AmKir2.2, and AmKir2.3). AmKir1.1, AmKir2.2, and AmKir2.3 isoforms exhibited distinct characteristics when expressed in Xenopus oocytes. AmKir1.1 exhibited the largest potassium currents and was impermeable to cesium whereas AmKir2.2 and AmKir2.3 exhibited smaller currents but allowed cesium to permeate. AmKir1 exhibited faster opening kinetics than AmKir2. Pharmacological experiments revealed that both AmKir1.1 and AmKir2.2 are blocked by the divalent ion barium, with IC50 values of 10-5 and 10-6 M, respectively. The concentrations of VU041, a small molecule with insecticidal properties required to achieve a 50% current blockade for all three channels were higher than those needed to block Kir channels in other arthropods, such as the aphid Aphis gossypii and the mosquito Aedes aegypti. From this, we conclude that Apis mellifera AmKir channels exhibit lower sensitivity to VU041.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Abelhas/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Potenciais da Membrana/fisiologia , Potássio , Clonagem Molecular , Isoformas de Proteínas/genética , Césio
16.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1225-1236, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658159

RESUMO

Phospholipase A2 (PLA2) is widely distributed in animals, plants, and microorganisms, and it plays an important role in many physiological activities. In a previous study, we have identified a secretory PLA2 in Bombyx mori (BmsPLA2-1-1). In this study, we further identified four new sPLA2 genes (BmsPLA2-1-2, BmsPLA2-2, BmsPLA2-3, and BmsPLA2-4) in B. mori genome. All four genes exhibits the characteristic features of sPLA2, including the sPLA2 domain, metal binding sites, and highly conserved catalytic domain. This study completed the cloning, in vitro expression, and expression pattern analysis of the BmsPLA2-4 gene in B. mori. The full length of BmsPLA2-4 is 585 bp, and the recombinant protein obtained through prokaryotic expression has an estimated size of 25 kDa. qRT-PCR analysis revealed that the expression level of BmsPLA2-4 reached its peak on the first day of the fifth instar larval stage. Tissue expression profiling analysis showed that BmsPLA2-4 had the highest expression level in the midgut, followed by the epidermis and fat body. Western blotting analysis results were consistent with those of qRT-PCR. Furthermore, after infecting fifth instar 1-day-old larvae with Escherichia coli and Staphylococcus aureus, the expression level of the BmsPLA2-4 gene significantly increased in 24 h. The findings of this study provides a theoretical basis and valuable experimental data for future related research.


Assuntos
Bombyx , Fosfolipases A2 Secretórias , Bombyx/genética , Bombyx/enzimologia , Animais , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/metabolismo , Larva/genética , Clonagem Molecular , Staphylococcus aureus/genética , Staphylococcus aureus/enzimologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/biossíntese , Sequência de Aminoácidos , Perfilação da Expressão Gênica
17.
HardwareX ; 18: e00516, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38524156

RESUMO

Liquid handler systems can provide significant benefits to researchers by automating laboratory work, however, their unaffordable price provides a steep barrier to entry. Therefore, we provide the BioCloneBot, a versatile, low-cost, and open-source automated liquid handler. This system can be easily built with 3D-printed parts and readily available commercial components. The BioCloneBot is highly adaptive to user needs and facilitates various liquid handling tasks in research and diagnostics. Its user-friendly interface and programmable nature make it suitable for a wide range of applications, from small-scale experiments to larger laboratory setups. By utilizing BioCloneBot, researchers and scientists can streamline their liquid handling processes without the financial constraints posed by traditional systems. In this paper, we detail the design, construction, and validation of BioCloneBot, showcasing its precise control, accuracy, and repeatability in various liquid handling tasks. The open-source nature of the system encourages collaboration and customization, enabling researchers to contribute and adapt the technology to specific experimental requirements.

18.
Bioinformation ; 20(2): 91-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497067

RESUMO

Rift Valley Fever (RVF) is a mosquito-borne viral zoonosis caused by RVFV in humans and livestock. Currently, there are no approved vaccines or antiviral therapies available. Additionally, in Saudi Arabia, there is a lack of a routine screening system to monitor RVFV in humans and animals which hinders to design and develop the preventive measures as well as the prediction of future outbreaks and the potential re-emergence of RVFV. Hence, we have performed the cloning, sequencing, and phylogenetic analysis, of nucleocapsid (N) protein gene. The sequence analysis showed high similarities with RVFV isolates reported from humans and animals. The highest similarity (99.5%) was observed with an isolate from Saudi Arabia (KU978775-Human) followed by 99.1% with four RVFV isolates (Human and Bovine) from other locations. A total of 51 nucleotides and 31 amino acid variations were observed throughout the N protein gene sequences. The phylogenetic relationship formed closed clusters with other isolates collected from Saudi Arabia. Thus, we report of the cloning, sequencing, and phylogenetic analysis of the RVFV-N protein gene from Saudi Arabia.

19.
Plants (Basel) ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38498460

RESUMO

MYB transcription factors (TFs) have been shown to play a key role in plant growth and development and are in response to various types of biotic and abiotic stress. Here, we clarified the structure, expression patterns, and function of a MYB TF, SlMYB86-like (Solyc06g071690) in tomato using an inbred tomato line exhibiting high resistance to bacterial wilt (Hm 2-2 (R)) and one susceptible line (BY 1-2 (S)). The full-length cDNA sequence of this gene was 1226 bp, and the open reading frame was 966 bp, which encoded 321 amino acids; its relative molecular weight was 37.05055 kDa; its theoretical isoelectric point was 7.22; it was a hydrophilic nonsecreted protein; and it had no transmembrane structures. The protein also contains a highly conserved MYB DNA-binding domain and was predicted to be localized to the nucleus. Phylogenetic analysis revealed that SlMYB86-like is closely related to SpMYB86-like in Solanum pennellii and clustered with other members of the family Solanaceae. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of the SlMYB86-like gene was tissue specific and could be induced by Ralstonia solanacearum, salicylic acid, and jasmonic acid. The results of virus-induced gene silencing (VIGS) revealed that SlMYB86-like silencing decreased the resistance of tomato plants to bacterial wilt, suggesting that it positively regulates the resistance of tomatoes to bacterial wilt. Overall, these findings indicate that SlMYB86-like plays a key role in regulating the resistance of tomatoes to bacterial wilt.

20.
J Biotechnol ; 385: 42-48, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479472

RESUMO

Oryzamutaic acids, possessing a nitrogen-containing heterocyclic skeleton, have been isolated and identified from a rice mutant. Although oryzamutaic acids are expected to be functional ingredients, their functionality is difficult to evaluate, because of their wide variety and presence in trace amounts. Furthermore, how oryzamutaic acid is synthesized in vivo is unclear. Therefore, we developed a simple enzymatic synthesis method for these compounds in vitro. We focused on L-lysine ε-dehydrogenase (LysDH) from Agrobacterium tumefaciens, which synthesizes α-aminoadipate-δ-semialdehyde-a precursor of oryzamutaic acids. LysDH was cloned and expressed in Escherichia coli. Analysis of activity revealed that LysDH catalyzed the synthesis of oryzamutaic acid H at neutral pH in vitro. We synthesized 1.6 mg oryzamutaic acid H from 100 mg L-lysine. The synthesized oryzamutaic acid H exhibited UVA absorption, stability of temperature, and stability at a wide pH range. To our knowledge, this study is the first to report the enzymatic synthesis of oryzamutaic acid H in vitro and provides a basis for understanding the mechanisms of oryzamutaic acid synthesis in vivo.


Assuntos
Agrobacterium tumefaciens , Aminoácido Oxirredutases , Agrobacterium tumefaciens/genética , Lisina , Ácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...